Design of nanowire optical cavities as efficient photon absorbers.

نویسندگان

  • Sun-Kyung Kim
  • Kyung-Deok Song
  • Thomas J Kempa
  • Robert W Day
  • Charles M Lieber
  • Hong-Gyu Park
چکیده

Recent investigations of semiconductor nanowires have provided strong evidence for enhanced light absorption, which has been attributed to nanowire structures functioning as optical cavities. Precise synthetic control of nanowire parameters including chemical composition and morphology has also led to dramatic modulation of absorption properties. Here we report finite-difference time-domain (FDTD) simulations for silicon (Si) nanowire cavities to elucidate the key factors that determine enhanced light absorption. The FDTD simulations revealed that a crystalline Si nanowire with an embedded 20-nm-thick amorphous Si shell yields 40% enhancement of absorption as compared to a homogeneous crystalline Si nanowire, under air-mass 1.5 global solar spectrum for wavelengths between 280 and 1000 nm. Such a large enhancement in absorption results from localization of several resonant modes within the amorphous Si shell. A nanowire with a rectangular cross section exhibited enhanced absorption at specific wavelengths with respect to a hexagonal nanowire. The pronounced absorption peaks were assigned to resonant modes with a high symmetry that red-shifted with increasing size of the rectangular nanowire. We extended our studies to investigate the optical properties of single- and multilayer arrays of these horizontally oriented nanowire building blocks. The absorption efficiency of a nanowire stack increases with the number of nanowire layers and was found to be greater than that of a bulk structure or even a single nanowire of equivalent thickness. Lastly, we found that a single-layer nanowire array preserves the structured absorption spectrum of a single nanowire and ascribed this result to a diffraction effect of the periodic nanowire array. The results from these provide insight into the design of nanowire optical cavities with tunable and enhanced light absorption and thus, could help enable the development of ultrathin solar cells and other nanoscale optoelectronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system.

We developed superconducting nanowire single-photon detectors with an optical cavity (OC-SNSPDs) for multichannel systems. For efficient coupling, the devices were installed in compact fiber-coupled packages after their substrate thickness was reduced from 400 to 45 microm. The measured detection efficiency (DE) measurement at different substrate thicknesses and the estimation of optical coupli...

متن کامل

Localised excitation of a single photon source by a nanowaveguide.

Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevic...

متن کامل

Ultra-high quality factor optical resonators based on semiconductor nanowires.

We propose a platform to achieve ultra-high Quality factor (Q) optical resonators based on semiconductor nanowires. By defining onedimensional photonic crystal at nanowire ends and engineering the microcavity pattern, cavities with Q of 3 x 10(5) and mode volume smaller than 0.2(lambda/n)(3) have been designed. This represents an increase of almost three orders of magnitude over the Quality fac...

متن کامل

A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source

The efficient delivery of photons from light sources to photonic circuits is central to any fibre-optic or integrated optical system. Coupling light emitters to optical fibres or waveguides determines the photon flux available in, and therefore the performance of, photonic devices used in applications such as optical communication and information processing. Many solutions have been proposed to...

متن کامل

Superenhancers: Novel opportunities for nanowire optoelectronics

Nanowires play a crucial role in the development of new generation optoelectronic devices ranging from photovoltaics to photodetectors, as these designs capitalize on the low material usage, utilize leaky-mode optical resonances and possess high conversion efficiencies associated with nanowire geometry. However, their current schemes lack sufficient absorption capacity demanded for their practi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 2014